Table III. Energy of COT as a Function of Bond Angle

| Bond angle,
 deg | Unsymmetrical structures
 Bond lengths,
 \AA | ΔH_{f},
 $\mathrm{kcal} / \mathrm{mol}$ | Symmetrical structures
 Bongths,
 length | ΔH_{f},
 $\mathrm{kcal} / \mathrm{mol}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 135.0 | $1.355 ; 1.475$ | 73.7 | 1.410 | 87.6 |
| 132.575 | $1.353 ; 1.471$ | 66.1 | 1.408 | 79.6 |
| 130.15 | $1.353 ; 1.471$ | 60.9 | 1.407 | 74.2 |
| 127.725 | $1.353 ; 1.471$ | 57.8 | 1.407 | 71.3 |
| 125.3 | $1.355 ; 1.473$ | 56.7 | 1.408 | 70.3 |

shift in fact takes place via a symmetrical nonplanar structure as transition state; the difference in energy between this and COT would then be ΔE, rather than ΔE plus the energy required to flatten the COT ring. The nonplanar transition state could indeed correspond to the "crown" structure considered earlier" as a possibility for COT itself.
(7) E. R. Lippincott, R. C. Lord, and R. S. McDonald, J. Am. Chem. Soc., 73, 3370 (1951).
(8) Robert A. Welch Postdoctoral Fellow.

Michael J. S. Dewar, Alan Harget, ${ }^{8}$ Edwin Haselbach ${ }^{8}$
Department of Chemistry, The University of Texas Austin, Texas 78712
Received August 14, 1969

New Evidence for the 1,2-Shift
 Pathway in Fluxional
 Monohaptocyclopentadienylmetal Compounds ${ }^{1}$

Sir:
A pmr study of $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(h^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)^{2}$ showed conclusively that rearrangement of the (h^{1} $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring occurs predominantly by 1,2 or 1,3 shifts as opposed to any process causing random site exchanges. On the available evidence 1,2 shifts were preferred. Further, but indirect, evidence ${ }^{3}$ supported 1,2 shifts. Still, this fundamental point merits further attention.

We therefore report two studies which strengthen the case for 1,2 shifts. ${ }^{4}$

[^0]

Figure 1. Spectra of the olefinic multiplet of $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mathrm{Ru}(\mathrm{CO})_{2}-$ $\left(h^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ recorded at several temperatures in $3: 1(\mathrm{v} / \mathrm{v}) \mathrm{CS}_{2}-$ $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ at 100 MHz .
(1) $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}(\mathrm{CO})_{2}\left(h^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (2) has been prepared. ${ }^{\text {5a }}$ Pmr spectra of both $\mathbf{1}$ and $\mathbf{2}$ have been studied at low temperatures. Both show unsymmetrical collapse of the olefinic multiplet (Figure 1), with the lowfield side collapsing more rapidly. ${ }^{5 b}$ As explained before, assignment of this part of the multiplet to $\mathrm{H}(2)$, $H\left(2^{\prime}\right)$ proves 1,2 shifts, while assigning it to $H(3), H\left(3^{\prime}\right)$ proves 1,3 shifts. Strong evidence for its assignment to $\mathrm{H}(2), \mathrm{H}\left(2^{\prime}\right)$ comes from the limiting low-temperature spectra, as shown in Figure 2 for 2. The very similar limiting spectra of $\mathbf{1}$ and $\mathbf{2}$ are well reproduced by com-puter-simulated spectra, obtained after iterative refinement of coupling constants ${ }^{6}$ to the values of Table I. These sets of J values, which the comparisons in Table I show to be very plausible, assume that the low-field part of each multiplet is due predominantly to $\mathrm{H}(2)$, $H\left(2^{\prime}\right)$. Because the $H(1)$ resonance (a broadened triplet, well reproduced in the simulated spectra) is $\sim 250 \mathrm{~Hz}$ upfield, the profile of the olefinic multiplet is negligibly altered by reversing the assignment and simultaneously the values of J_{12} and J_{13}. However, the values $\left|J_{12}\right| \approx 0$ and $\left|J_{13}\right| \approx 1.2$ are not acceptable. ${ }^{7}$ Thus only the assignment leading to 1,2 shifts is acceptable.
(5) (a) Made in yields of $1-5 \%$ by treating $\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ or $\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{I}_{2}$ with $\mathrm{NaC}_{5} \mathrm{H}_{5}$ in 1,2-dimethoxyethane. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Ru}$: $\mathrm{C}, 50.17 ; \mathrm{H}, 3.52$. Found: C, 50.2 ; H, 3.55 . (b) For 1, $E_{\text {a }}=9.8$ $\pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\log A=11.7 \pm 0.1 ;$ for $2, E_{\mathrm{a}}=10.3 \pm 0.3 \mathrm{kcal}$ mol^{-1} and $\log A=11.2 \pm 0.2$.
(6) NMRPLOT, a modified version of the computer program LAOCN3 by A. A. Bothner-By and S. M. Castellano, was kindly supplied by Professor G. M. Whitesides of this department.
(7) (a) H. Guinther, Z. Naturforsch, 24b, 680 (1969), shows that J_{13} varies from +1 to -1.8 Hz with dihedral angle, γ, being 0 for $\gamma \approx 60^{\circ}$. (b) M. Karplus, J. Chem. Phys., 30, 11 (1959); J. Amer. Chem. Soc., 85,

Table I. Proton-Proton Coupling Constants (Hz)

Compound	J_{12}	J_{13}	J_{23}	$J_{23}{ }^{\prime}$	J_{22}^{\prime}	$J_{33}{ }^{\prime}$	Source
$\mathrm{C}_{5} \mathrm{H}_{6}$	+1.36	-1.52	+5.06	+1.09	+1.98	+1.90	
1	± 1.17	± 0.01	+4.66	+1.15	+2.02	+2.02	
2	± 1.22	± 0.10	4.64	1.17	2.06	2.12	
Indene	2.02	-1.98	5.58		b		
$\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(h^{1}-\mathrm{C}_{9} \mathrm{H}_{7}\right)$	~ 2.3	~ 0	5.5		c		

 ence 3.
(2) To reconcile solution pmr data ${ }^{8}$ and the crystal structure ${ }^{9}$ of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{MoNO}$, it has been proposed ${ }^{9}$ that in solution the conformers 3 a and the enantiomorphous forms of $\mathbf{3 b}$ cease to be rapidly interconverted and, for any given molecule, one enantiomorph of $\mathbf{3 b}$ increasingly predominates below about -60°. This explains why

Figure 2. Upper trace: part of the limiting low temperature spectrum of $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}(\mathrm{CO})_{2}\left(h^{1-} \mathrm{C}_{5} \mathrm{H}_{5}\right)$ recorded at -82° in $3: 1$ (v/v) $\mathrm{CS}_{2}-\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ at 100 MHz . Abscissa: Hz vs. TMS. Lower curve: computer simulated spectrum using J values given in Table I.
two $\mathrm{C}_{5} \mathrm{H}_{5}$ rings which are equivalently bonded to the Mo atom become nonequivalent in the pmr spectrum, while the olefinic multiplet of the ($h^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$) group simultaneously breaks up into a more complex pattern. ${ }^{8}$ The details of this breakup provide support for 1,2shifts by confirming the assignment of the signal at lower field to $H(2), H\left(2^{\prime}\right)$. Thus, it is the low-field side which again collapses below -50°, ultimately giving rise to two signals each of intensity appropriate to one proton. This can be attributed to the molecule settling into one of the $\mathbf{3 b}$ configurations (both are found in the crystal ${ }^{9}$), in which the $H(2), H\left(2^{\prime}\right)$ protons sense their different environments strongly due to their proximity to the $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ MoNO moiety, while the $\mathrm{H}(3), \mathrm{H}\left(3^{\prime}\right)$ protons are much further away and sense the differences much less. Assignment of the low-field signal to $\mathrm{H}(2)$, $H\left(2^{\prime}\right)$ is thus required.

Relevant to considerations of rotational isomers of types $\mathbf{3 a}$ and $\mathbf{3 b}$ are some observations on $\mathbf{1}$ and 2. Under high resolution in cyclohexane, the infrared spectra of 1 and 2 show four CO stretching bands.
2870 (1963), correlates J_{12} with ϕ, obtaining $J_{12} \approx 2-3 \mathrm{~Hz}$ for $\phi \approx 60^{\circ}$ and $J_{12} \rightarrow 0$ as $\phi \rightarrow 90^{\circ}$. The actual ϕ in 3 is about 56°, while that in cyclopentadiene (Professor V. Laurie, Princeton University, private communication) is about 55°.
(8) F. A. Cotton and P. Legzdins, J. Amer. Chem. Soc., 90, 6232 (1968), and further studies by the present authors.
(9) J. L. Calderon, F. A. Cotton, and P. Legzdins, ibid., 91, 2528 (1969).

For 1: 2022, 2016, 1973, $1966 \mathrm{~cm}^{-1}$; for 2: 2030, 2023, 1976, $1969 \mathrm{~cm}^{-1}$. The components of each doublet have an intensity ratio of 2 ± 1 which changes by only $5-10 \%$ from -65 to $+35^{\circ}$. We attribute these observations to approximately equal population of conformers $\mathbf{1 a}$ and $\mathbf{1 b}, \mathbf{2 a}$ and $\mathbf{2 b}$, with ΔH for $\mathbf{a}-\mathbf{b}$ interconversions $<0.5 \mathrm{kcal}$. In crystalline $\mathbf{1 ,}{ }^{2} \mathbf{1 a}$ is found.
(10) National Science Foundation Predoctoral Fellow, 1966-1970.

F. A. Cotton, T. J. Marks ${ }^{10}$
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Received October 2, 1969

Third-Order Rates of Conversion of Phenylacetylene, a Weak Carbon Acid, by Sodium Hypochlorite to Phenylchloroacetylene and by Sodium Hypobromite to Phenylbromoacetylene
Sir:
It is commonly accepted that the halogenation of weak carbon acids, e.g., ketones, nitriles, nitroalkanes, etc., in basic solution is first order in $\mathbf{C H}$, first order in base, and zero order in halogen (eq 2). ${ }^{1}$ We now report

$$
\begin{align*}
& \mathrm{CH}+\mathrm{OH}^{-} \xrightarrow{\text { slow }} \mathrm{C}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}^{-}+\mathrm{X}_{2} \xrightarrow{\text { fast }} \mathrm{CX}+\mathrm{X}^{-} \tag{1}\\
& \text {rate }=k[\mathrm{CH}]\left[\mathrm{OH}^{-}\right]\left[\mathrm{X}_{2}\right]^{0} \tag{2}
\end{align*}
$$

a third-order rate law (eq 3) for halogenation $\left(X_{2}=\mathrm{Cl}_{2}\right.$

$$
\begin{equation*}
\text { rate }=k\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{XO}^{-}\right] \tag{3}
\end{equation*}
$$

or Br_{2}) of the hydrocarbon phenylacetylene, according to the stoichiometry of eq 4.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}+\mathrm{OH}^{-}+\mathrm{X}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CX}+\mathrm{H}_{2} \mathrm{O}+\mathrm{X}^{-}$
Some of the kinetic data obtained for reaction 4 are given in Table I. In the range $\mathrm{pH}>11$ and $\left[\mathrm{OH}^{-}\right]_{0}>$ $2\left[\mathrm{X}_{2}\right]_{0}$, the equilibrium constants for chlorine and bromine in eq 5 are $K \simeq 10^{15}$ and 10^{8}, respectively, ${ }^{2}$ so that

$$
\begin{equation*}
2 \mathrm{OH}^{-}+\mathrm{X}_{2} \rightleftharpoons \mathrm{XO}^{-}+\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{5}
\end{equation*}
$$

essentially all of the halogen is in the form of hypohalite ions. (In the range $\left[\mathrm{X}_{2}\right]_{0} \simeq 2[\mathrm{OH}]_{0}$ in which X_{2} or HOX are present, competing additions to phenylacetylene complicate this system.) The formation of phenylhaloacetylene was followed spectrophotometrically
(1) (a) R. P. Bell, "The Proton in Chemistry," Cornell University Press, Ithaca, N. Y., 1959, Chapters IX, X; (b) A. A. Frost and R. G. Pearson, "Kinetics and Mechanism," 2nd ed, John Wiley \& Sons, Inc., New York, N. Y., Chapter 9.
(2) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 2nd ed, John Wiley \& Sons, Inc., New York, N. Y., 1966, p 570.

[^0]: (1) Stereochemically Nonrigid Organometallic Molecules. XXVI, Previous paper in this series: F. A. Cotton and T. J. Marks, J. Organometal. Chem., 19, 237 (1969). The present study was supported in part by the Petroleum Research Fund administered by the American Chemical Society, and the National Science Foundation under Grant No. 7034 .
 (2) M. J. Bennett, F. A. Cotton, A. Davison, J. W. Faller, S. J. Lippard, and S. M. Morehouse, J. Amer. Chem. Soc., 88, 4371 (1966).
 (3) F. A. Cotton, A. Musco, and G. Yagupsky, ibid., 89, 6136 (1967).
 (4) 1,2 shifts may not predominate in all such molecules, as for example those with nontransitional or borderline metals.

